Fabrication of Photo-curable Polyurethane-Acrylate for 3D Printing based on Viscosity and UV Curing time

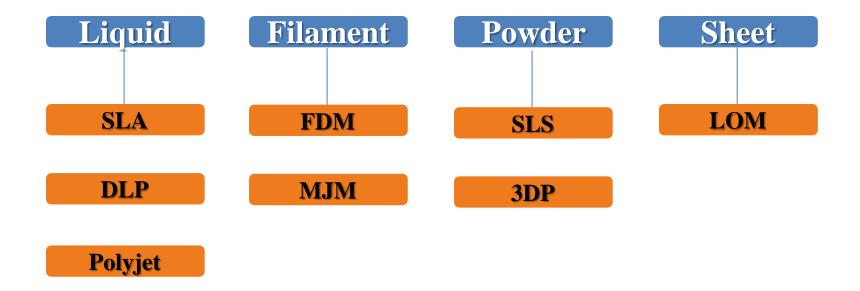
WonBin Lim, Ji-Hong Bae, Chanhyuk Jee, Byung Joo Kim, Jin Gyu Min, Chang Min Seo, PilHo Huh* Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, South Korea

* pilho.huh@pusan.ac.kr

Abstract

Nowadays, 3D printers have been undergone much attention in all fields of industry. The photo-curing resins which ranging from rigid to flexible, are successfully prepared using the synthesis of Polyurethane-Acrylate. It will be used for according to the application through the measurement of flexural strength and hardness. The intrinsic viscosity of the photo-curable monomer and polymer is measured to target the molecular weight of the material. The photo-curing polymer is produced through physical or chemical reaction, and the curing time and physical properties of the material are adjusted according to the purpose. It can be controlled the ratio of the photo initiator and polymer. For example, Thermoplastic polyurethane (TPU) series based on polyethylene glycol(PEG) as a polyol and hexamethylene diisocyanate (HDI) as a isocyanate were synthesized as a function of molecular weight formulation. After that, PU-acryl will be synthesized by attaching hydroxyethyl-methacrylate(HEMA) and used for DLP 3D printing by controlling the content ratio of photo-initiator and addition multifunctional acrylate.

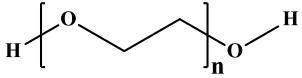
What is 3D Printing ?

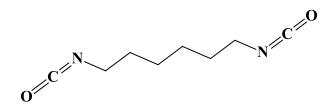

Definition

Process builds a three-dimensional object from a computer-aided design (CAD) model, usually by successively adding material layer by layer, which is also called additive manufacturing.

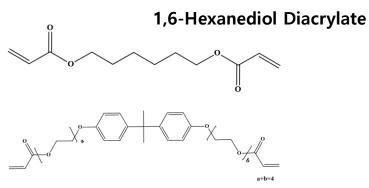
Materials

- Plastics : Nylon, Polyamide, PLA, ABS, Thermoplastic Polyurethane etc.
- Resins : CLIP, CE- Cyanate Ester, Prototyping Acrylate etc.
- Multicolor(composite material)
- Metals : Aluminium, Cobalt, Stainless, Titanium

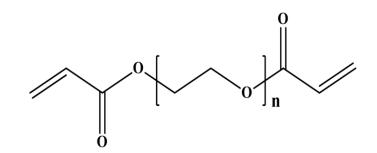

Classification of 3D printing according to methods and materials


Experimental

Materials

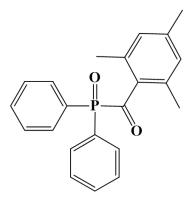

- Polyol : PEG(Polyethylene glycol)

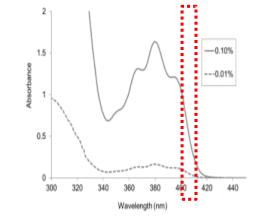
- Isocyanate : HDI(Hexamethylene diisocyanate)



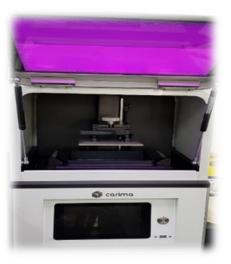
- Acrylate :

Bisphenol A (EO)₄ Diacrylate

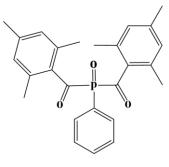

- Addition Acrylate : PEG(Polyethylene glycol) Diacrylate

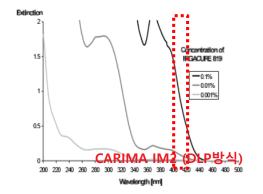


Experimental


Photo Initiator

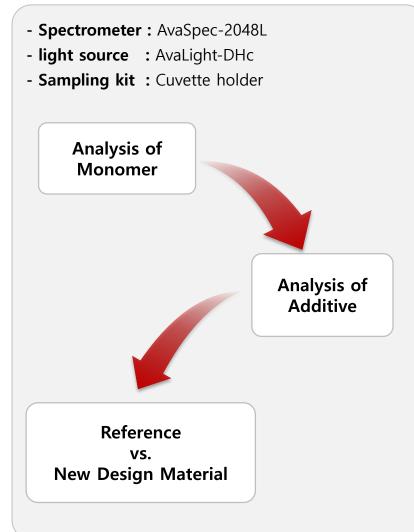
- TPO : Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide

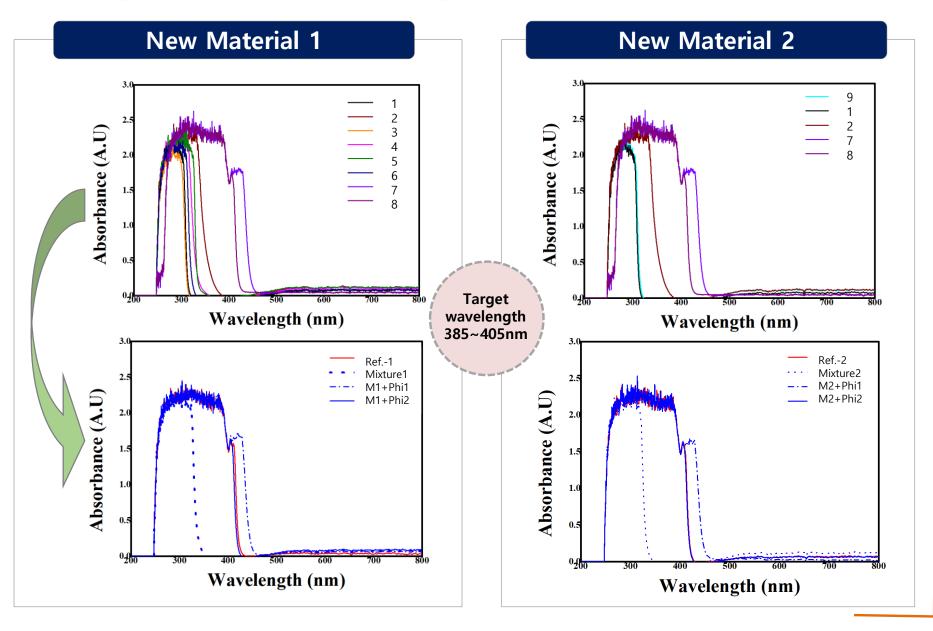

DLP(Digital Light Processing)



- IRGACURE 819 : Bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide)

CARIMA – IM2


Wavelength: 385~405nm


Design of 3D Printing materials

UV absorbance

Design of 3D Printing materials

Analysis of Viscosity

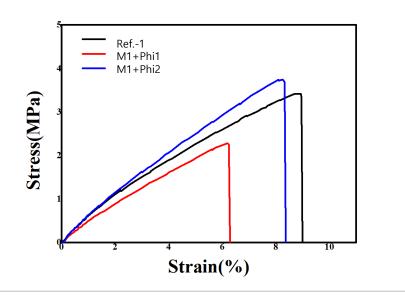
LAMY RM 100 PLUS CP2000 0 · 223

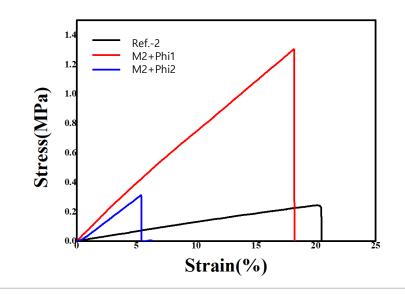
	CONDITION		
SHEAR RATE	50s ⁻¹		
DURATION	60sec		
TEMPERATURE	25°C		

VISCOSITY

SAMPLE	VISCOSITY	
M1	435.8mPa.s	
M2	297.2mPa.s	
Reference	139mPa.s	
M1+Phi1	104mPa.s	
M1+Phi2	89.7mPa.s	
M2+Phi1	87.4mPa.s	
M2+Phi2	82.7mPa.s	

Analysis of UTM


Young's Modulus


- New Material-1: Ref. vs. [w/Phi2] Stress 9.6% ↑ / Strain 7.5% ↓
- New Material-2: [w/Phi1] Stress 434.5% ↑ / Strain 13.9% ↓

	Young's Modulus (Mpa)	Maximum Stress (Mpa)	Percent Strain(%)
Ref1	0.3820	3.4150	8.9376
M1+Phi1	0.3682	2.2814	6.1957
M1+Phi2 0.4531		3.7441	8.2632

New Material-1

New Material-2					
	Young's Modulus (Mpa)	Maximum Stress (Mpa)	Percent Strain(%)		
Ref2	0.0110	0.2440	21.4020		
M2+Phi1	0.0700	1.3041	18.4270		
M2+Phi2	0.0490	0.3121	6.3289		

Analysis of SEM

	New Material 1			New Material 2		
	Ref1	M1		Ref2	M2	
		Phi1	Phi2	Sterie a	Phi1	Phi2
Properties	0	O	0	0	Ø	0
Sticky	Δ	0	0	Δ	0	0
Sample	IN	M	IN	IFU	IFU	UT
Front	(X500) 20 2002-81 (2014)	e angest ministration that	e eneral estated for the	es exercita mini in lauri editi" fatuali		a engel et al 1 de also test
side	(X500) 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20	e years		e vente en esta de la de la dela de la dela de la dela de		

Conclusions

The successful synthesis Acryl-polyurethane and UV-cured by the photo-initiator

 The special optical properties of the Acryl-polyurethane after UV-curing (UV transmittance : 83 to 90%)

The increase of percentage strain and tensile strength after UV-curing

```
• The thermal properties were measured using DSC

(T_g = -52^{\circ}C, T_m = 199^{\circ}C)
```

To demonstrate potential applications of 3D printer materials

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) (No. NRF-2019R1A2C1087953)